Commutation Relations and Discrete Garnier Systems
نویسندگان
چکیده
We present four classes of nonlinear systems which may be considered discrete analogues of the Garnier system. These systems arise as discrete isomonodromic deformations of systems of linear difference equations in which the associated Lax matrices are presented in a factored form. A system of discrete isomonodromic deformations is completely determined by commutation relations between the factors. We also reparameterize these systems in terms of the image and kernel vectors at singular points to obtain a separate birational form. A distinguishing feature of this study is the presence of a symmetry condition on the associated linear problems that only appears as a necessary feature of the Lax pairs for the least degenerate discrete Painlevé equations.
منابع مشابه
Bi-orthogonal systems on the unit circle, regular semi-classical weights and the discrete Garnier equations
We demonstrate that a system of bi-orthogonal polynomials and their associated functions corresponding to a regular semi-classical weight on the unit circle constitute a class of general classical solutions to the Garnier systems by explicitly constructing its Hamiltonian formulation and showing that it coincides with that of a Garnier system. Such systems can also be characterised by recurrenc...
متن کاملExact Discrete Analogs of Canonical Commutation and Uncertainty Relations
An exact discretization of the canonical commutation and corresponding uncertainty relations are suggested. We prove that the canonical commutation relations of discrete quantum mechanics, which is based on standard finite difference, holds for constant wave functions only. In this paper, we use the recently proposed exact discretization of derivatives, which is based on differences that are re...
متن کاملSome Thoughts on COMMUTATION RELATIONS and MEASUREMENT ACCURACY
We show that measuring the trajectories of charged particles to nite accuracy leads to the commutation relations needed for the derivation of the free space Maxwell equations using the discrete ordered calculus (DOC). We note that the nite step length derivation of the discrete di erence version of the single particle Dirac equation implies the discrete version of the p; q commutation relations...
متن کاملDiscrete phase space - II: The second quantization of free relativistic wave fields
The Klein-Gordon equation, the Maxwell equation, and the Dirac equation are presented as partial difference equations in the eight-dimensional covariant discrete phase space. These equations are also furnished as difference-differential equations in the arena of discrete phase space and continuous time. The scalar field and electromagnetic fields are quantized with commutation relations. The sp...
متن کاملIntegrable Quantum Mappings and Quantization Aspects of Integrable Discrete-time Systems
We study a quantum Yang-Baxter structure associated with non-ultralocal lattice models. We discuss the canonical structure of a class of integrable quantum mappings, i.e. canonical transformations preserving the basic commutation relations. As a particular class of solutions we present two examples of quantum mappings associated with the lattice analogues of the KdV and MKdV equations, together...
متن کامل